
2/15/99

Management of Class Temporaries in C++ Translation
Systems

Kent G. Budge, James S. Peery, Allen C. Robinson, and Michael K. Wong

kgbudge@sandia.gov, jspeery@sandia.gov, acrobin@sandia.gov, mkwong@sandia.gov

Sandia National Laboratories1

Albuquerque, NM 87185-5800

Abstract
An important feature of C++ for a growing community of numerical programmers is its support of
operator overloading on value classes. Value classes are classes used to build expressions; they have
an interface of overloaded operator functions and are not part of an inheritance hierarchy (though
they are often part of a conversion hierarchy.) Value classes greatly facilitate the writing of lower-
level code in large numerical programs by providing encapsulation and data abstraction for abstract
data types.

Most of the efficiency concerns that have been voiced by numerical programmers about C++ focus
on the use of value classes in computationally intensive code. A detailed comparison shows that
code written using the prototypical value class,complex , can be considerably less efficient at run
time than code performing equivalent computations without the use of value classes. Investigation
shows that this loss of efficiency is directly attributable to the inability of present compilers to store
intermediate results returned from overloaded operator functions in registers. It is relatively simple
to correct this difficulty, as illustrated bycppopt , an optimizing wrapper forcfront .

1This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract
number DE-AC04-76DP00789.
1

load-
d operator
he pto-
orm
writing
ct data
.

of value
cs in the
ers sus-

at
urned
Intr oduction
An important feature of C++ for a growing community of numerical programmers is its support of operator over
ing on value classes. Value classes are classes used to bulid expressions; they have an interface of overloade
functions and are not part of an inheritance hierarchy (though they are often part of a conversion hierarchy.) T
totypical example of a value class iscomplex , a class representing complex numbers, which is supplied in one f
or another in the class libraries that accompany most C++ implementations. Value classes greatly facilitate the
of lower-level code in large numerical programs by providing encapsulation and data abstraction for abstra
types. A more complete discussion of value classes and their uses in scientific computing can be found in [1]

Most of the efficiency concerns that have been voiced by numerical programmers about C++ focus on the use
classes in computationally intensive code. These classes have excellent software engineering characteristi
sense that they greatly reduce the amount of lower-level code that must be written. However, many programm
pect that they are responsible for seriously inhibiting optimization.

In this paper, we investigate the run-time efficiency ofcomplex by comparing its performance with the built-in
complex type in FORTRAN-77. We find thatcomplex can be considerably less efficient. Investigation shows th
this loss of efficiency is directly attributable to the inability of present compilers to store intermediate results ret
from overloaded operator functions in registers.

The Test Case
Our C++ test case is as follows:

class complex {
private:

double re, im;

public:
complex(void) {}
complex(double r, double i=0.0) : re(r), im(i) {}

friend complex operator+(complex a, complex b){
return complex(a.re+b.re, a.im+b.im);

}

friend complex operator-(complex a, complex b){
return complex(a.re-b.re, a.im-b.im);

}

friend complex operator*(complex a, complex b){
return complex(a.re*b.re-a.im*b.im, a.im*b.re+a.re*b.im);

}
};

void func(complex*, const complex*, const complex*, int);

main(){
complex a[100000], b[100000], c[100000];
for (int i=0; i<100; i++){

func(a, b, c, 100000);
}

}

void func(complex *a, const complex *b, const complex *c, int N){
for (int i=0; i<N; i++) a[i] = b[i] + c[i] - b[i]*c[i];

}

The equivalent FORTRAN-77 code is
2

at
e

once, to

ing the

ing the
s

program main
complex*16 a(100000), b(100000), c(100000)

do 10 i=1, 100
call func(a, b, c, 100000)

10 continue
stop
end

subroutine func(a, b, c, n)
integer n
complex*16 a(n), b(n), c(n)

do 10 i=1, n
a(i) = b(i) + c(i) - b(i)*c(i)

10 continue
return
end

Any comparison ofcomplex with the built-in complex type in FORTRAN-77 must begin with the assumption th
the overloaded operator functions associated withcomplex will be successfully inlined. Otherwise, there is no hop
at all thatcomplex will compare favorably a built-in complex type. Sincecfront will not inline a function more
than once in a single expression [2], we have chosen an expression in which each operator is used only
ensure complete inlining.

Our initial timing tests yield the following results:

The Sun and HP CC compilers are CFRONT-based; g++ is the GNU native C++ compiler. We note that chang
argument types in the overloaded operator functions fromcomplex to const complex& appears to have little
effect on the timing.

The results are surprisingly consistent. The FORTRAN-77 code is nearly twice as fast as the C++ code us
complex value class. This is true in spite of the fact that all of thecomplex operations are successfully inlined, a
verified by examing thecfront output.

Isolating the Problem
Thecfront translation of the loop infunc is

for(;__1i < __1N ;__1i ++) (__1a [__1i])= ((__2__X4 = (((((
((& __0__X__V300qmhbbbp)-> re__7complex = ((__1b [__1i]) .
re__7complex + (__1c [__1i]). re__7complex)), ((&
__0__X__V300qmhbbbp)-> im__7complex = ((__1b [__1i]).
im__7complex + (__1c [__1i]). im__7complex)))), (&

Table 1: Comparison ofcomplex with FORTRAN-77

Test Platform Effective MFlops Ratio to FORTRAN-77

Sun f77 7.9

Sun CC 4.3 0.54

Sun g++ 4.5 0.57

HP f77 15.4

HP CC 9.0 0.58
3

lds

e now
ions,

ly 4.9
tomat-
__0__X__V300qmhbbbp)) ,
__0__X__V300qmhbbbp))), ((__2__X5 = (((((((&
__0__X__V100yfhbbjp)-> re__7complex = (((__1b [__1i]).
re__7complex *
(__1c [__1i]). re__7complex)- ((__1b [__1i]). im__7complex *
(__1c [__1i]). im__7complex))), ((& __0__X__V100yfhbbjp)->
im__7complex = (((__1b [__1i]). im__7complex * (__1c [__1i]).
re__7complex)+ ((__1b [__1i]).
re__7complex * (__1c [__1i]). im__7complex))))), (&
__0__X__V100yfhbbjp)) , __0__X__V100yfhbbjp))), (((((
((& __0__X__V200ejhbbfp)-> re__7complex = (__2__X4 . re__7complex
- __2__X5 . re__7complex)), ((& __0__X__V200ejhbbfp)->
im__7complex = (__2__X4 . im__7complex - __2__X5 . im__7complex
)))
), (& __0__X__V200ejhbbfp)) , __0__x__V200ejhbbfp)))) ;
}

Thecfront output is difficult to read. Demangling and elimination of extraneous parentheses in this code yie

for (i=0; i<N; i++){
a[i] =
(

tmp1 =
(

(&tmp2)->re = b[i].re + c[i].re,
(&tmp2)->im = b[i].im + c[i].im,
&tmp2,
tmp2

),
tmp4 =
(

(&tmp3)->re = b[i].re * c[i].re - b[i].im * c[i].im,
(&tmp3)->im = b[i].im * c[i].re + b[i].re * c[i].im,
&tmp3,
tmp3

),
(&tmp5)->re = tmp1.re - tmp4.re,
(&tmp5)->im = tmp1.im - tmp4.im,
&tmp5,
tmp5

);
}

We see that everything has been successfully inlined, there are no remaining function calls in the loop. If w
replace all constructs of the form(&a)-> with a. , eliminate unused expressions, and parse out comma express
we obtain

for (i=0; i<N; i++){
tmp2.re = b[i].re + c[i].re;
tmp2.im = b[i].im + c[i].im;
tmp1 = tmp2;
tmp3.re = b[i].re*c[i].re - b[i].im*c[i].im;
tmp3.im = b[i].im*c[i].re + b[i].re*c[i].im;
tmp4 = tmp3;
tmp5.re = tmp1.re - tmp4.re;
tmp5.im = tmp1.im - tmp4.im;

a[i] = tmp5;
}

In spite of all the cleaning up we have done, if we send this code to the Sun cc compiler, we still obtain on
MFlops. All we have done is to perform by hand those optimizations that the C compiler is capable of doing au
ically.
4

hat the

g them:

raries
t local
vasive,

revious

cted for
uct mem-
sembler
Suppose we now eliminate all temporaries:

for (i=0; i<N; i++){
a[i].re = b[i].re + c[i].re - b[i].re*c[i].re - b[i].im*c[i].im;
a[i].im = b[i].im + c[i].im - b[i].im*c[i].re + b[i].re*c[i].im;

}

The performance now jumps to 8.0 MFlops, which is equal to the FORTRAN-77 performance. This suggests t
problem lies in the inability of the translation system to eliminate struct temporaries.

As a test of this hypothesis, we try breaking up the class temporaries into sets of doubles rather than eliminatin

for (i=0; i<N; i++){
tmp2_re = b[i].re + c[i].re;
tmp2_im = b[i].im + c[i].im;
tmp1_re = tmp2_re;
tmp1_im = tmp2_im;
tmp3_re = b[i].re*c[i].re - b[i].im*c[i].im;
tmp3_im = b[i].im*c[i].re + b[i].re*c[i].im;
tmp4_re = tmp3_re;
tmp4_im = tmp3_im;
tmp5_re = tmp1_re - tmp4_re;
tmp5_im = tmp1_im - tmp4_im;

a[i].re = tmp5_re;
a[i].im = tmp5_im;

}

We find that the performance is now 7.9 MFlops, essentially identical to what is achieved by eliminating tempo
outright. The translation systems we tested are evidently able to eliminate local variables of built-in type, but no
variables of class type. This is a limitation of C back ends, not of the C++ front end, and it appears to be per
since it appears in both Sun CC, GNU g++, and HP CC.

The Solution: Disaggregation of Structures
C++ compilers implement classes as structs in order to enhance C compatibility. The problem outlined in the p
section arises from the way structs are treated in the back end.

To the back end, a struct is a set of named, typed offsets. When a local struct is declared, stack memory is allo
the struct, and the struct name and address are entered into the symbol table. All subsequent references to str
bers are then treated as offsets from the struct address. On the Sun SPARC, this results in the following as
code:

_func:
save %sp, -176, %sp
tst %i3
ble LE28
mov 0, %15

L77029:
ld [%i2+4], %f3
ld [%i2], %f2 ! %f2/3 = c->re
ld [%i1+4], %f1
ld [%i1], %f0 ! %f0/1 = b->re
faddd %f0, %f2, %f0 ! %f0/1 += %f2/3
inc %i5 ! i++
cmp %i5, %i3 ! i>N
std %f0, [%fp-16] ! *** tmp2.re = %f0/1 ***
ld [%i1+8], %f6
ld [%i1+12] %f7 ! %f6/7 = b->im
ld [%i2+8], %f8
5

full effi-
raries.
This has
ld [%i2+12], %f9 ! %f8/9 = c->im
faddd %f6, %f8, %f6 ! %f6/7 += %f8/9
ld [%fp-16], %o2
ld [%fp-12] %o4 ! *** %o2/4 = tmp2.re ***
st %o2, [%fp-32]
std %f6, [%fp-8] ! *** tmp2.im = %f6 ***
ld [%fp-8], %02
ld [%fp-4], %o1 ! *** %o2/1 = tmp2.im ***
st %o2, [%fp-24] ! *** tmp1.im = %o2/1 ***
st %o1, [%fp-20]
st %o4, [%fp-28] ! *** tmp1.re = %o2/4 ***
ld [%i1], %f24
ld [%i1+4], %f25 ! %f24/25 = b->re
ld [%i2] %f26
ld [%i2+4], %f27 ! %f26/27 = c->re
fmuld %f24, %f26, %f14 ! %f14/15 = %f24/25 + %f26/27
ld [%i1+8], %f28
ld [%i1+12], %f29 ! %f28/29 = b->im
ld [%i2+8], %f30
ld [%i2+12], %f31 ! %f30/31 = c->im
fmuld %f28, %f30, %f12 ! %f12/13 = %f28/29 * %f30/31
inc 16, %i2 ! c++
inc 16, %i1 ! b++
fmuld %f28, %f26, %f28 ! %f28/29 *= %f26/27
fsubd %f14, %f12, %f14 ! %f14/15 -= %f12/13
fmuld %f24, %f30, %f24 ! %f24/25 *= %f30/31
std %f14, [%fp-48] ! *** tmp3.re = %f14/15 ***
ld [%fp-48], %o2
faddd %f28, %f24, %f28 ! %f28/29 += %f24/25
ld [%fp-44], %o4 ! %o2/4 = tmp3.re ***
st %o2, [%fp-64]
ldd [%fp-32], %f24 ! *** %f24/25 = tmp1.re ***
std %f28, [%fp-40] ! *** tmp3.im = %f28/29 ***
ld [%fp-40], %o2
ld [%fp-36], %o1 ! *** %o2/1 = tmp3.im ***
st %o4, [%fp-60] ! *** tmp4.re = %o2/4 ***
ldd [%fp-64], %f26 ! *** %f26/27 = tmp4.re ***
fsubd %f24, %f26, %f24 ! %f24/25 -= %f26/27
st %o1, [%fp-52]
ldd [%fp-24], %f30 ! *** %f30/31 = tmp1.im ***
st %o2, [%fp-56] ! *** tmp4.im = %o2/1 ***
ldd [%fp-56], %f0 ! *** %f0/1 = tmp4.im ***
fsubd %f30, %f0, %f30 ! %f30/31 -= %f0/1
std %f24, [%fp-80] ! *** tmp5.re = %f24/25 ***
ld [%fp-80] %o2
std %f30, [%fp-72] ! *** tmp5.im = %f24/30 ***
ld [%fp-80], %o2
std %f30, [%fp-27] ! *** tmp5.im = %f24/30 ***
ld [%fp-76], %o4 ! *** %o2/4 = tmp5.re ***
st %o2, [%i0]
ld [%fp-72], %o2
st %o4, [%i0+4] ! a->re = %o2/4
ld [%fp-68], %o0 ! *** %o2/0 = tmp5.im ***
st %o2, [%i0+8]
st %o0, [%i0+12] ! a->im = %o2/0
bl L77029
inc 16, %i0 ! a++

LE28:
ret
restore

RISC assembler code is somewhat unreadable, due to the complex instruction scheduling required to achieve
ciency. Nevertheless, we felt it important to give these examples to help illustrate the impact of struct tempo
Note the very large number of accesses to stack memory (emphasized here with asterisks in the comments.)
6

mbers of
emory.
e test
a large, detrimental, effect on performance. One solution is to permit the optimizer todisaggregateselected struc-
tures. In other words, in those cases where the optimizer is able to deduce that the relative addresses of me
the struct are not significant, the struct is broken up into individual objects that need not be contiguous in m
The optimizer is then able to move the individual struct members into registers. We did this by hand for th
described in the previous section; the result is the Sun SPARC assembly code

_func:
tst %o3
ble LE28
mov 0, %05 ! i = 0
add %o5, 1, %o4
cmp %o4, %o3
bge,a LY5 ! N not divisible by 2?
ld [%o2+12], %f31

L77046:
ld [%o2+12], %f31
ld [%o2+8], %f30 ! %f30/31 = c->im
ld [%o1+12], %f29
ld [%o1+8], %f28 ! %f28/29 = b->im
fmuld %f28, %f30, %f4 ! %f4/5 = %f28/29 * %f30/31
faddd %f28, %f30, %f2 ! %f2/3 = %f28/29 + %f30/31
ld [%02+4], %f27
ld [%o2], %f26 ! %f26/27 = c->re
ld [%o1+4], %f25
fmuld %f28, %f26, %f28 ! %f28/29 *= %f26/27
ld [%o1], %f24 ! %f24/25 = b->re
faddd %f24, %f26, %f0 ! %f0/1 +%f24/25 + %f26/27
inc 2, %o5 ! i+=2
add %o5,1,%o4
cmp %o4,%o3 ! i+1>N
fmuld %f24,%f26,%f6 ! %f6/7 = %f24/25 * %f26/27
fmuld %f24,%f30,%f24 ! %f24/25 *= %f30/31
fsubd %f6, %f4, %f6 ! %f6/7 -= %f4/5
faddd %f28,%f24,%f24 ! %f24/25 += %f28/29
fsubd %f0,%f6,%f28 ! %f28/29 = %f0/1 - %f6/7
fsubd %f2,%f24,%f30 ! %f30/31 = %f2/3 - %f24/25
st %f28,[%o0]
st %f29,[%o0+4] ! a->re = %f28/29
st %f30,[%o0+8]
st %f31,[%o0+12] ! a->im = %f30/31
ld [%o1+16],%f24
ld [%o1+20],%f25 ! %f24/25 = (b+1)->re
ld [%o2+16],%f26
ld [%o2+20],%f27 ! %f26/27 = (c+1)->re
fmuld %f24,%f26,%f8 ! %f8/9 = %f24/25 * %f26/27
faddd %f24,%f26,%f2 ! %f2/3 = %f24/25 + %f26/27
ld [%o1+24],%f28
ld [%o1+28],%f29 ! %f28/29 = (b+1)->im
ld [%o2+24],%f30
ld [%o2+28],%f31 ! %f30/31 = (c+1)->im
fmuld %f28,%f30,%f6 ! %f6/7 = %f28/29 * %f30/31
faddd %f28,%f30,%f4 ! %f4/5 = %f28/29 + %f30/31
inc 32, %o2 ! c += 2
inc 32, %o1 ! b += 2
fmuld %f28,%f26,%f28 ! %f28/29 *= %f26/27
fsubd %f8,%f6,%f8 ! %f8/9 -= %f6/7
fmuld %f24,%f30,%f24 ! %f24/25 *= %f30/31
faddd %f28,%f24,%f24 ! %f24/25 += %f28/29
fsubd %f2,%f8,%f28 ! %f28/29 = %f2/3 - %f8/9
st %f28, [%o0+16]
fsubd %f4, %f24,%f30 ! %f30/31 = %f4/5 - %f24/25
st %f29,[%o0+20] ! (a+1)->re = %f28/29
st %f30,[%o0+24]
7

re,
t add to

ically
counted
r/tensor
le
g
ot unrea-
st %f31,[%o0+28] ! (a+1)->im = %f30/31
bl L77046
inc 32,%o0 ! a += 2

L77053:
cmp %o5,%o3 ! i>N
bge LE28
nop
ld [%o2+12],%f31

LY5:
ld {%o2+8],%f30 ! %f30/31 = c->im
ld [%o1+12],%F29
ld [%o1+8],%f28 ! %f28/29 = b->im
ld [%o1+12],%f29
ld [%o1+8],%f28 ! %f28/29 = b->im
fmuld %f28,%f30,%f4 ! %f4/5 = %f28/29 * %f30/31
faddd %f28,%f30,%f2 ! %f2/3 = %f28/29 + %f30/31
ld [%o2+4],%f27
ld [%o2],%f26 ! %f26/27 = c->re
ld [%o1+4],%f25
fmuld %f28,%f26,%f28 ! %f28/29 *= %f26/27
ld [%o1],%f24 ! %f24/25 = b->re
faddd %f24,%f26,%f0 ! %f0/1 = %f24/25 + %f26/27
inc 16,%o1 ! b++
inc 16,%o2 ! c++
fmuld %f24,%f26,%f6 ! %f6/7 = %f24/25 * %f26/27
inc %o5 ! i++
fmuld %f24,%f30,%f24 ! %f24/25 *= %f30/31
fsubd %f6,%f4,%f6 ! %f6/7 -= %f4/5
faddd %f28,%f24,%f24 ! %f24/25 += %f28/29
fsubd %f0,%f6,%f28 ! %f28/29 = %f0/1 - %f6/7
st %f28,[%o0]
fsubd %f2,%f24,%f30 ! %f30/31 = %f2/3 - %f24/25
st %f29,[%o0+4] ! a->re = %f28/29
st %f30,[%o0+8]
st %f31,[%o0+12] ! a->im = %f30/31
b L77053
inc 16, %o0 ! a++

LE28:
retl

There is not a single reference to the stack frame.1 All the temporaries have been moved into registers. Furthermo
the optimizer has conditionally unrolled the loop once and has performed some algebraic transformations tha
the run-time efficiency.

The cppopt Testbed
To investigate various optimizing transformations, we have developedcppopt , an ANSI C-to-ANSI C translation
program that is used as a wrapper aroundcfront . We have givencppopt the ability to recognize disaggregable
structs and replace these structs with distinct objects representing their members.

We have usedcppopt to translate C++ code that uses value classes. We find that computation speed is typ
increased by 60% and approaches 95% of the speed of FORTRAN-77. (The remaining discrepancy may be ac
for by the less stringent C aliasing rules.) This is true both for our test case and for a test harness for a vecto
value class library in use at Sandia. However, effective use ofcppopt requires that the value classes be simp
enough to use the default copy constructor generate bycfront (which is implemented as ordinary bitwise copyin
of the struct) and that the overloaded operator functions pass by value rather than by reference. These are n
sonable restrictions.

1. All parameters offunc are passed in registers %o0 to %o4.
8

en. How-

to our
t is also

sent
cense.

rs. The
nearly
While
ble to

One is
d we
is the
ievable

tion of

s will
mpilers
-77.
tions if
Identification of structs that should be disaggregated is the greatest challenge incppopt . We assume that it is safe to
disaggregate a struct if the struct name never appears outside of a dot expression whose address is not tak
ever, this rule is too restrictive for struct disaggregation to be of much use when applied to rawcfront output. For
example, the output ofcfront tends to contain expressions of the form

(&a)->b

This inhibits disaggregation of the structa, but it can safely be transformed to the equivalent expression

a.b

which does not inhibit disaggregation. Likewise, struct assignment (which inhibits disaggregation according
rule) is common, but can be transformed to a comma expression that performs memberwise assignment. I
common for the address of a struct to be taken but not used. Thus, it is necessary forcppopt to eliminate all unused
expressions and perform certain transformations prior to identifying disaggregable structs.

We wish to emphasize thatcppopt is purely a testbed and is not suitable for routine or commercial use in its pre
form. However, we will be happy to share this code with others under the terms of the GNU general software li

Conclusions
In our previous paper [1], we discussed the potential importance of value classes to scientific C++ programme
complex class, at least, it likely to see widespread use in numerical C++ codes. A performance penalty of
50% relative to both low-level C++ code and the FORTRAN-77 complex type is unacceptable in the long run.
one can always build expert knowledge of this particular value class into a compiler, it is much more desira
adopt optimization techniques that are applicable to all value classes.

We have identified two obstacles to efficient value class code generation in current C++ translation systems.
the present limitations on inlining capability, which we discuss in [1]. This is not a fundamental problem, an
anticipate that it will be solved in most of the native C++ compilers now under development. The other obstacle
one discussed in this paper: the inability of optimizers to disaggregate structs. Disaggregation of structs is ach
with modest effort, but has not generally been recognized as an important optimization prior to the introduc
C++.

The development of C++ compilers capable of heavy inlining and of optimization by disaggregation of struct
not solve all the efficiency problems that have been noted by scientific C++ programmers. However, such co
will provide FORTRAN-like efficiency for coding styles that are superior to anything supported by FORTRAN
We believe C++ has the potential to replace FORTRAN as the language of choice for many scientific applica
proper attention is paid to the kinds of efficiency and optimization issues we have discussed in our papers.
9

ted
References
[1] Budge, K.G., Peery, J.S., Robinson, A.C., and Wong, M.K. “C++ and Object-Orien

Numerics.”Journal of C Language Translation5, 32 (1993).

[2] Stroustrup, B., and Ellis, M. The Annotated C++ Reference Manual.Addison-Wesley
Publishing Company, Reading, MA (1990).

	References
	Abstract
	Introduction
	The Test Case
	Isolating the Problem
	The Solution: Disaggregation of Structures
	The cppopt Testbed
	Conclusions

